A quantitative version of Catlin-D’Angelo–Quillen theorem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A More General Version of the Costa Theorem

In accordance with the Costa theorem, the interference which is independent of the channel input and known non-causally at the transmitter, does not affect the capacity of the Gaussian channel. In some applications, the known interference depends on the input and hence has some information. In this paper, we study the channel with input dependent interference and prove a capacity theorem that n...

متن کامل

A quantitative version of the Roth-Ridout theorem

We shall show that there is a effectively computable upper bound of the heights of solutions for an inequality in Roth-Ridout’s theorem.

متن کامل

A tight quantitative version of Arrow's impossibility theorem

The well-known Impossibility Theorem of Arrow asserts that any Generalized Social Welfare Function (GSWF) with at least three alternatives, which satisfies Independence of Irrelevant Alternatives (IIA) and Unanimity and is not a dictatorship, is necessarily nontransitive. In 2002, Kalai asked whether one can obtain the following quantitative version of the theorem: For any > 0, there exists δ =...

متن کامل

A Quantitative Version of the Idempotent Theorem in Harmonic Analysis

Suppose that G is a locally compact abelian group, and write M(G) for the algebra of bounded, regular, complex-valued measures under convolution. A measure μ ∈ M(G) is said to be idempotent if μ ∗ μ = μ, or alternatively if μ̂ takes only the values 0 and 1. The Cohen-Helson-Rudin idempotent theorem states that a measure μ is idempotent if and only if the set {γ ∈ Ĝ : μ̂(γ) = 1} belongs to the cos...

متن کامل

A Quantitative Version of Runge's Theorem on Diophantine Equations

(C1) ai,n = am,j = 0 for all non-zero i and j, (C2) ai,j = 0 for all pairs (i, j) satisfying ni+mj > mn, (C3) the sum of all monomials ai,jxy of F for which ni+mj = nm is a constant multiple of a power of an irreducible polynomial in Z[x, y]. We note that (C2) is a stronger condition than (C1). The reason that (C1) is included above will be made clear in the statement of Theorem 1. We will make...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analysis and Mathematical Physics

سال: 2012

ISSN: 1664-2368,1664-235X

DOI: 10.1007/s13324-012-0035-4